黑人生活问题(BLM)是一项分散的社会运动,抗议对黑人个人和社区的暴力行为,重点是警察暴力。 2020年,艾哈迈德·阿贝里(Ahmaud Arbery),布雷纳·泰勒(Breonna Taylor)和乔治·弗洛伊德(George Floyd)的杀害后,该运动引起了人们的关注。#BlackLivesMatter社交媒体标签已经代表了基层运动,并以类似的标签来抗议BLM运动,例如#AllllivesMatter和#allllivesmatter和#allllivesmatter,以及#bluelivesmatter。我们介绍了来自100多个国家 /地区的1,300万用户的6390万推文的数据集,其中包含以下关键字之一:BlackLivesMatter,AlllivesMatter和BluelivesMatter。该数据集包含从2013年BLM运动开始到2021年的所有当前可用推文。我们总结了数据集并显示了使用BlackLivesMatter关键字和与反向运动相关的关键字的时间趋势。此外,对于每个关键字,我们创建并发布了一组潜在的Dirichlet分配(LDA)主题(即自动聚集了语义上共同共的单词的组),以帮助研究人员识别这三个关键字的语言模式。
translated by 谷歌翻译
Representing and reasoning about uncertainty is crucial for autonomous agents acting in partially observable environments with noisy sensors. Partially observable Markov decision processes (POMDPs) serve as a general framework for representing problems in which uncertainty is an important factor. Online sample-based POMDP methods have emerged as efficient approaches to solving large POMDPs and have been shown to extend to continuous domains. However, these solutions struggle to find long-horizon plans in problems with significant uncertainty. Exploration heuristics can help guide planning, but many real-world settings contain significant task-irrelevant uncertainty that might distract from the task objective. In this paper, we propose STRUG, an online POMDP solver capable of handling domains that require long-horizon planning with significant task-relevant and task-irrelevant uncertainty. We demonstrate our solution on several temporally extended versions of toy POMDP problems as well as robotic manipulation of articulated objects using a neural perception frontend to construct a distribution of possible models. Our results show that STRUG outperforms the current sample-based online POMDP solvers on several tasks.
translated by 谷歌翻译
Score based approaches to sampling have shown much success as a generative algorithm to produce new samples from a target density given a pool of initial samples. In this work, we consider if we have no initial samples from the target density, but rather $0^{th}$ and $1^{st}$ order oracle access to the log likelihood. Such problems may arise in Bayesian posterior sampling, or in approximate minimization of non-convex functions. Using this knowledge alone, we propose a Monte Carlo method to estimate the score empirically as a particular expectation of a random variable. Using this estimator, we can then run a discrete version of the backward flow SDE to produce samples from the target density. This approach has the benefit of not relying on a pool of initial samples from the target density, and it does not rely on a neural network or other black box model to estimate the score.
translated by 谷歌翻译
In this paper, we examine the problem of visibility-aware robot navigation among movable obstacles (VANAMO). A variant of the well-known NAMO robotic planning problem, VANAMO puts additional visibility constraints on robot motion and object movability. This new problem formulation lifts the restrictive assumption that the map is fully visible and the object positions are fully known. We provide a formal definition of the VANAMO problem and propose the Look and Manipulate Backchaining (LaMB) algorithm for solving such problems. LaMB has a simple vision-based API that makes it more easily transferable to real-world robot applications and scales to the large 3D environments. To evaluate LaMB, we construct a set of tasks that illustrate the complex interplay between visibility and object movability that can arise in mobile base manipulation problems in unknown environments. We show that LaMB outperforms NAMO and visibility-aware motion planning approaches as well as simple combinations of them on complex manipulation problems with partial observability.
translated by 谷歌翻译
Topological data analysis (TDA) is a branch of computational mathematics, bridging algebraic topology and data science, that provides compact, noise-robust representations of complex structures. Deep neural networks (DNNs) learn millions of parameters associated with a series of transformations defined by the model architecture, resulting in high-dimensional, difficult-to-interpret internal representations of input data. As DNNs become more ubiquitous across multiple sectors of our society, there is increasing recognition that mathematical methods are needed to aid analysts, researchers, and practitioners in understanding and interpreting how these models' internal representations relate to the final classification. In this paper, we apply cutting edge techniques from TDA with the goal of gaining insight into the interpretability of convolutional neural networks used for image classification. We use two common TDA approaches to explore several methods for modeling hidden-layer activations as high-dimensional point clouds, and provide experimental evidence that these point clouds capture valuable structural information about the model's process. First, we demonstrate that a distance metric based on persistent homology can be used to quantify meaningful differences between layers, and we discuss these distances in the broader context of existing representational similarity metrics for neural network interpretability. Second, we show that a mapper graph can provide semantic insight into how these models organize hierarchical class knowledge at each layer. These observations demonstrate that TDA is a useful tool to help deep learning practitioners unlock the hidden structures of their models.
translated by 谷歌翻译
Diffusion models have quickly become the go-to paradigm for generative modelling of perceptual signals (such as images and sound) through iterative refinement. Their success hinges on the fact that the underlying physical phenomena are continuous. For inherently discrete and categorical data such as language, various diffusion-inspired alternatives have been proposed. However, the continuous nature of diffusion models conveys many benefits, and in this work we endeavour to preserve it. We propose CDCD, a framework for modelling categorical data with diffusion models that are continuous both in time and input space. We demonstrate its efficacy on several language modelling tasks.
translated by 谷歌翻译
Researchers produce thousands of scholarly documents containing valuable technical knowledge. The community faces the laborious task of reading these documents to identify, extract, and synthesize information. To automate information gathering, document-level question answering (QA) offers a flexible framework where human-posed questions can be adapted to extract diverse knowledge. Finetuning QA systems requires access to labeled data (tuples of context, question and answer). However, data curation for document QA is uniquely challenging because the context (i.e. answer evidence passage) needs to be retrieved from potentially long, ill-formatted documents. Existing QA datasets sidestep this challenge by providing short, well-defined contexts that are unrealistic in real-world applications. We present a three-stage document QA approach: (1) text extraction from PDF; (2) evidence retrieval from extracted texts to form well-posed contexts; (3) QA to extract knowledge from contexts to return high-quality answers -- extractive, abstractive, or Boolean. Using QASPER for evaluation, our detect-retrieve-comprehend (DRC) system achieves a +7.19 improvement in Answer-F1 over existing baselines while delivering superior context selection. Our results demonstrate that DRC holds tremendous promise as a flexible framework for practical scientific document QA.
translated by 谷歌翻译
数据是现代机器学习系统的命脉,包括音乐信息检索中的命脉(MIR)。但是,MIR长期以来一直被小型数据集和不可靠的标签所困扰。在这项工作中,我们建议使用生成建模打破这种瓶颈。通过使用室内合奏的结构化合成模型(在URMP上训练的MIDI-DDSP)的结构化合成模型,通过管道说明(在巴赫合唱上训练的椰子)模型,我们演示了一个能够生成无限量的逼真的合唱音乐的系统,其中包括丰富的结合音乐,包括混合,包括混合,,,包括混合,茎,MIDI,笔记级性能属性(Staccato,Vibrato等),甚至是细粒的合成参数(音高,振幅等)。我们称此系统为室内集合发生器(CEG),并使用它来生成来自四个不同腔室合奏(cocochorales)的大型合唱数据集。我们证明,使用我们的方法生成的数据改善了音乐转录和源分离的最新模型,并且我们均发布了系统和数据集作为MIR社区未来工作的开源基础。
translated by 谷歌翻译
包括无人驾驶汽车(UAV)在内的自动移动机器人因其在建筑中的应用而受到了极大的关注。这些平台具有极大的潜力,可以自动化和增强许多任务所需数据的质量和频率,例如施工时间表更新,检查和监视。强大的本地化是可靠部署自动机器人平台的关键推动力。自动化的机器人解决方案主要依靠全球定位系统(GPS)进行户外定位。但是,GPS信号在室内被拒绝,并且经常使用预建的环境图来室内定位。这需要通过对环境中的移动机器人进行远程操作来产生高质量的地图。这种方法不仅耗时且乏味,而且在室内建筑环境中也是不可靠的。布局随着施工的进度而变化,需要频繁的映射会话来支持自主任务。此外,依赖视觉特征的基于视觉解决方案的有效性在现场低质地和重复区域都受到高度影响。为了应对这些挑战,我们以前提出了使用Apriltags的低成本,轻巧的基于标签的视觉惯性定位方法。在这种方法中,标签是具有已知尺寸和位置的纸张可打印地标,代表环境的准图。由于标签放置/更换是一个手动过程,因此它会遭受人体错误。在这项工作中,我们研究了人体错误在手动标签安装过程中的影响,并提出了一种随机方法,以使用谎言组理论来解决这种不确定性。使用蒙特卡洛模拟,我们通过实验表明,在我们的Manifold配方中纳入的拟议随机模型可提高基于标签的定位对在现场手动标签安装中不可避免的瑕疵的鲁棒性和准确性。
translated by 谷歌翻译
用于图像分类的深神经网络通常使用卷积过滤器来提取区分特征,然后再将其传递到线性分类器。大多数可解释性文献都集中在为卷积过滤器提供语义含义,以解释模型的推理过程,并确认其从输入域中使用相关信息。可以通过使用单数值分解分解其重量矩阵来研究完全连接的层,实际上研究每个矩阵中的行之间的相关性以发现地图的动力学。在这项工作中,我们为卷积层的重量张量定义了一个奇异的值分解,该分解器提供了对过滤器之间的相关性的类似理解,从而揭示了卷积图的动力学。我们使用随机矩阵理论中的最新结果来验证我们的定义。通过在图像分类网络的线性层上应用分解,我们建议一个框架,可以使用HyperGraphs应用可解释性方法来模型类别分离。我们没有寻找激活来解释网络,而是使用每个线性层具有最大相应奇异值的奇异向量来识别对网络最重要的特征。我们用示例说明了我们的方法,并介绍了本研究使用的分析工具DeepDataProfiler库。
translated by 谷歌翻译